Kinematic Equations

- Descriptions of Motion (words \rightarrow sentences)

$$
\begin{array}{ll}
x, \text { velocity }=\frac{\Delta x}{\Delta t}, \quad \text { acceleration } \quad a=\frac{\Delta v}{\Delta t} \\
v=v_{i}+a t, \quad a=\Delta v / \Delta t, \quad a \Delta t=\Delta v=v_{f}-v_{i}
\end{array}
$$

$$
\begin{aligned}
& v_{x}(t) \uparrow \quad A_{1}=\frac{1}{2}\left(t_{f}-t_{i}\right)\left(v_{f}-v_{i}\right) \\
& a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \\
& a\left(t_{f}-t_{i}\right)=\left(v_{f}-v_{i}\right) \\
& A_{2}=v_{i}\left(t_{f}-t_{1}\right) \\
& A_{1}=\frac{1}{2} a\left(t_{f}-t_{i}\right)^{2}, \quad t_{f}=t, t_{i}=0 \\
& A_{1}+A_{2}=\frac{1}{2} a t^{2}+v_{i} t=x_{f}-x_{i} \\
& \Rightarrow x=x_{i}+v_{i} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Kinematic Equations

- Descriptions of Motion (words \rightarrow sentences)
- Summary:

$$
\begin{aligned}
& V=v_{i}+a t \\
& x=x_{i}+v_{i} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Helpful Hints for Kinematics

- Time is the key to kinematics:
- the independent variable
- horizontal axis for motion graphs
- For problem solving:
- you can always refer everything back to the time at which it happens
- simultaneous events occur at the same time
- multiple objects must be referenced to the same coordinate system

A ball is thrown upward with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$.
a) how long is the ball in the air?
b) What is the greatest height reached by the ball?

$$
\text { pt } v_{\text {top }}=0, a=g_{\text {ravitin }}
$$

$$
a_{\text {grave }}=g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

(a)

$$
\begin{aligned}
V=v_{i}+a t \rightarrow 0 \text { top } v=0=20 \mathrm{~m} / \mathrm{s}-g t_{1 / 2}, t_{1 / 2} & =\frac{20 \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \\
t_{\text {tot }}=2 t_{1 / 2} & =4.08 \mathrm{sec} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
y=y_{i}^{0}+v_{i} t+\frac{1}{2} a t^{2}, y_{\text {max }}=v_{i} t_{1 / 2}-\frac{1}{2} g t_{1 / 2}^{2} & =(20)(2.04)-\frac{1}{2}(9.8)(2.04)^{2} \\
& =20.4 \mathrm{~m}
\end{aligned}
$$

A top-fuel drag racing car can reach a speed of 100 mph in the first second of a race. ($100 \mathrm{mph}=44.7 \mathrm{~m} / \mathrm{s}$)
(a) Find the acceleration of the car, assuming that the acceleration is constant

$$
v_{f}=v_{i}+a t, \quad 44,7=0+a(1)
$$

(b) If the car continued at this acceleration, how fast $a=44.7 \mathrm{~m} / \mathrm{s}^{2}$ would it be going at the end of the quarter-mile track? (0.25 miles is approximately 0.42 km)

$$
\left.\begin{array}{rl}
d= & x=v / t+\frac{1}{2} a t^{2} \rightarrow \text { solve for time } \rightarrow
\end{array} \begin{array}{r}
\text { how long it } \\
\\
\text { takes to go } 1 / 4 \text { mile }
\end{array}\right\}
$$

Motion in 2 and 3 Dimensions

- Update: position, displacement, velocity, acceleration are vectors (meaning, they don't just point in one direction)
- Problems become tractable by looking at the individual components of the vector equations

Posítion:

$$
(x, y) \rightarrow \vec{r}
$$

Velocity: $\quad \vec{V}=\frac{\Delta \vec{r}}{\Delta t} \quad \vec{v} \| \stackrel{\rightharpoonup}{\Delta r}$

acceleration:

$$
\vec{a}=\frac{\Delta \vec{v}}{\Delta t}
$$

$$
\Delta v_{x}=\frac{x_{f}-x_{i}}{\Delta t}, \quad \Delta v_{y}=\frac{y_{f}-y_{i}}{\Delta t}
$$

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t} \quad a_{y}=\frac{\Delta v_{y}}{\Delta t}
$$

